
doi: 10.1098/rsta.1999.0392
, 1603-1619357 1999 Phil. Trans. R. Soc. Lond. A

 
J. Gil Sevillano, C. García�Rosales and J. Flaquer Fuster
 

strain deformation microstructure−Texture and large
 

Email alerting service
 herecorner of the article or click 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

 http://rsta.royalsocietypublishing.org/subscriptions go to: Phil. Trans. R. Soc. Lond. ATo subscribe to 

This journal is © 1999 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;357/1756/1603&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/357/1756/1603.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Texture and large-strain deformation
microstructure

By J. Gil Sevillano, C. Garc ı́a-Rosales and J. Flaquer Fuster

Centro de Estudios e Investigaciones Técnicas de Guipúzcoa (CEIT) and Faculty of
Engineering, University of Navarra, Apdo. 1555,

20009 San Sebastián, Spain (jgil@ceit.es)

Large-strain plastic deformation at low homologous temperature implies, among
other things, severe work hardening, strong crystallographic texturing, microstruc-
tural refining, and some degree of macroscopic redundant strain. In most cases, the
development of texture does not seem to particularly increase grain interactions
above their initial level, which is at the origin of the Hall–Petch effect. Continued
strain then leads asymptotically towards an absolute maximum of the tensile flow
stress below G/50, where G represents the elastic shear modulus.

However, it is well known that some simple deformation textures promote an
extraordinary enhancement of the plastic grain interactions that need to be accom-
modated by monotonically increasing mesoscopic (grain-size range) strain gradients.
Such behaviour is accompanied by a concomitant high work-hardening rate and
by a remarkable extension of the strengthening limit. The [110] body-centred-cubic
or [0001] hexagonal close-packed wire drawing textures constitute the paradigmatic
case, for which the flow stress limit reaches up to G/20. A quantitative explanation of
the phenomenon is given here with the help of a geometrical model of microstructural
development.

Keywords: work hardening; texture; curling; strain gradient plasticity; BCC and
HCP wires; large strains

1. Introduction

Large-strain plastic deformation of polycrystalline matter at low homologous temper-
ature and moderate strain rate, ε > 1, T/TM < 0.3, 102 s−1 > ε̇ > 10−5 s−1, implies
strong crystallographic texturing, drastic microstructural refining, dislocation sub-
structuring with concurrent severe work hardening, and building of internal stresses
at several scales, together with some degree of macroscopic redundant straining and
structural damage (Gil Sevillano et al . 1980; Aernoudt et al . 1993).

The complexities of the intragranular deformation mechanisms and ensuing three-
dimensional dislocation patterns have been highlighted many times, but still look
very far from being mastered. Let us call such intragranular plasticity aspects micro-
scopic, and let us assume that what happens inside a deforming single-crystal vol-
ume element can be abstracted or homogenized when dealing with mesoscopic size
plasticity problems: by mesoscopic we mean a size or scale covering the compatible
deformation of several contiguous grains. Such single-crystalline elements must be
small relative to grain size but large relative to characteristic lengths of dislocation
substructures, e.g. 10–20 µm3. The mesoscopic scale is assumed to be not so large as
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1604 J. Gil Sevillano and others

to be able to ignore the influence of deformation compatibility of neighbouring grains
on the individual behaviour of the grains. Thus, the possible development and effect
of intergranular and intragranular strain differences are to be taken into account.
This is, of course, the realm of finite-element method (FEM) type numerical calcu-
lations coupled to crystallographic plasticity; however, the present computing capa-
bilities still preclude simulations of the large-strain behaviour of three-dimensional
aggregates of differently oriented grains truly representative of real textures (Becker
& Panchanadeeswaran 1995; Bate, this issue). In the meantime, some opportunities
are left for assessing these problems with more approximate methods. It must also be
pointed out that the importance of strain gradients at such dimensional scale levels
will make the use of gradient-dependent versions of the plasticity theory unavoidable
(Fleck et al . 1994; Fleck & Hutchinson 1997) if FEM results are to be meaningful.

In the mesoscopic context, the lowest level of complication occurs when a single-
phase, single-crystalline or coarse-grain polycrystalline material is deformed through
a strain path that leads to a single-component or to some specially compensated
multi-component texture, by means of a process imparting only mild macroscopic
redundant strains, which could be minimized through control of the deformation-zone
geometry. We can then expect to merely find weak plastic heterogeneities from grain
to grain (deviations from the ideal Taylor isostrain approximation, attributable to
orientational strengthening, i.e. to differences of their orientation factor, M(ε)), and
weak local strain gradients affecting the neighbourhood of grain boundaries arising
from more local interactions (both heterogeneities contributing to the Hall–Petch
effect prominent at small strain levels). In that situation, which appears to be the
most common one, continued strain through stages III and IV leads, asymptotically,
towards an absolute strengthening limit below G/50 in terms of tensile equivalent
flow strength (Mτ IV

s , with τ IV
s the saturation resolved critical stress at very large

strains, and M an orientation factor close to 3; see Gil Sevillano (1993)). This seems
to be the case when rolling high-stacking fault energy face- or body-centred-cubic
(FCC or BCC) metals, or when drawing or extruding FCC metals. Processes involv-
ing macroscopic redundant strains implying mere simple shear gradients—like ECAE
pressing (equal channel angular extrusion) or drawing (Segal 1995; Humphreys, this
issue)—or the activation of microscopic heterogeneities in the form of intense simple
shear bands in other processes will accelerate the reaching of the saturation stress,
but they are not expected to have much more additional strengthening effects, judg-
ing by the work-hardening behaviour displayed by such materials in torsion tests
(Gil Sevillano et al . 1980).

However, even remaining in the single-phase polycrystalline realm, some simple
deformation textures are known to promote a strong enhancement of microstructure
refinement, coupled to the development of mesoscopic strain gradients of monoton-
ically increasing intensity, the 〈110〉 BCC or [0001] hexagonal close-packed (HCP)
drawing textures constituting the paradigmatic case. Moreover, such behaviour is
accompanied by a sustained work-hardening rate, leading to a remarkable extension
of the strengthening limit up to G/20 (Langford & Cohen 1969, 1975; Biswas et al .
1973; Langford et al . 1971).

The extra work hardening comes from a well-known texture-induced difference
between the mesoscopic (grain-size range) and macroscopic (sample range) strains
(Hosford 1964, 1993). The mutual accommodation of the shape change of neighbour-
ing grains, which must cooperate in building the macroscopic strain, produces typical
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Texture and large-strain deformation microstructure 1605

Figure 1. Cross-section of axisymmetrically extruded titanium aluminide (B2 ordered cubic
structure), ε = 2.77. The original grain structure was equiaxed (from Thomas et al . 1996, with
permission from the Institute of Materials).

Figure 2. Sketch of the shape adopted by the sections of individual grains in BCC wires with a
well-developed 〈110〉 fibre texture. The total grain is a very long ribbon, its extended width is
of the order of the initial (equiaxed) grain size. Adapted from Hosford (1993).

mesoscopic non-trivial curled grain patterns (also recently christened as VGS, ‘Van
Gogh sky’ structures!; see, for example, Naka et al . (1995), Thomas et al . (1996)
and Gil Sevillano et al . (1998), and figures 1 and 2). They require the necessary
storage of a grain-size-dependent density of dislocations of the same sign in bent
regions of mesoscopic size, much larger than the self-annihilation distance for edge
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Figure 3. Shear modulus compensated work-hardening rate of several BCC and HCP polycrys-
talline materials largely strained by axisymmetric elongation by wire drawing versus homologous
deformation temperature (Gil Sevillano 1991).

dislocation pairs of opposite sign (Ashby 1970, 1971). Consequently, the strength
fraction from such origins is immune to recovery below 0.3TM, and the storage of
necessary dislocations is determined by a geometrical condition of self-organization of
a grain structure, the modulus-compensated work-hardening rate is nearly indepen-
dent of the base metal being BCC or HCP, its alloy composition or the deformation
temperature (figure 3, and see Gil Sevillano (1991) for references).

All these phenomena are discussed in this paper with the help of a geometrical
model involving the shape change of a big number of grains. Patterns representative
of the grain distortion derived from axisymmetric deformation processes imparted
to BCC or HCP polycrystals are simulated from which the extra work hardening
is derived. The model is a sort of quasi-continuous upper-bound treatment of the
deformation of the polycrystal. The abnormal ‘universal’ high work-hardening rate
associated with curly microstructures is quantitatively explained. Some other inter-
esting information pertinent for performing more accurate (e.g. FEM) calculations of
this polycrystalline plastic phenomenon in the future is gathered, e.g. an indication of
the minimum number of grains in a section for the results to be truly representative.
The presence and consequences of development of local mesoscopic self-organized
curly microstructures in other deformation modes, particularly in rolling, are natu-
ral further developments of the present work.

2. The origin of the curly microstructures in wire-drawn sections of
BCC and HCP polycrystals

The origin of grain curling around the elongation axis in axisymmetrically drawn
BCC or HCP wires (as well as around the compression axis in axisymmetrically
compressed FCC samples) was explained a long time ago. Hosford (1993) recently
reviewed the experimental findings and the theoretical reasons that allow us to under-
stand this and other related phenomena (surface effects, i.e. orange-peel, size effect
on strength; and roping in ferritic stainless steels). In essence, when microscopic
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scale plasticity reasonably obeys the so-called Schmid law, the maximum plastic
work principle and its corollaries hold at larger scales. Then the polycrystal finds
the mesoscopic strain-rate field resolving the macroscopic strain-rate tensor (with
its boundary conditions) with the minimum expenditure of plastic power per unit
volume and, of course, only very rarely will the mesoscopic strain-rate field be uni-
form and coincide with the macroscopic one. A uniform mesoscopic strain-rate field
(the Taylor approximation for polycrystal deformation) gives an upper bound for the
macroscopic plastic work dissipation rate, or, for the macroscopic stresses or loads,
uniform mesoscopic direction in deviatoric stress space (the Sachs approximation)
provides a lower bound. When the two bounds for the polycrystal are very different,
there is plenty of room for the mesoscopic strain field to strongly deviate from the
isostrain-rate condition: intragranular and intergranular strain heterogeneities will
develop, at least at that instant of the deformation process. Finite mesoscopic strain
heterogeneities will only develop if such a difference persists all along the macro-
scopic strain path applied to the polycrystalline volume element. Two conditions are
necessary for the continuous growth of finite strain heterogeneities, as follows.

(a) The texture possessing an ample gap between the plastic power dissipation for
the mesoscopic uniform-strain hypothesis (the full-constraints condition (FC),
in the deformation texture terminology (van Houtte 1984)) and for the uni-
form stress direction hypothesis (the fully relaxed constraints (FRC) or Sachs
condition) must be stable along the actual strain path minimizing the plastic
work, i.e. the mesoscopically heterogeneous strain path actually chosen by the
macroscopic polycrystalline volume. Otherwise, the heterogeneous strain-rate
field will continuously change, with lower probabilities of accumulation of finite
strain differences from point to point.

(b) The accommodation strains must have some component implying mesoscopic
shape changes that are amplified or at least not counteracted by the macroscopic
shape change, because the accommodations, at infinitesimal strain scale, can
be viewed as local corrections superimposed on uniform-strain field. This can
be easily seen by considering, for instance, that bending accommodations of an
elongating axis are weakened by the long-term elongation; by contrast, bending
accommodations of contracting directions are amplified.

The case of axisymmetrically drawn BCC (or HCP) wires is a paradigmatic one
with respect to these two conditions. The macroscopic strain induces a single-compo-
nent stable 〈110〉 fibre texture from moderate strains (an [0001] in Ti HCP wires),
which becomes very sharp after large strains. Individual orientations composing the
measured texture are randomly misoriented around the wire axis and the 〈110〉 is
weakly deviated from this axis (some cyclicity of the texture can be found, par-
ticularly at the wire surfaces, with its intensity depending on the deformation-zone
geometry employed in the drawing passes). For the BCC 〈110〉 or nearby orientations,
the ratio of the plastic work for axisymmetric strain versus FRC (Sachs) elongation
is very high. If all the critical stresses of the {110}〈111〉 and {112}〈111〉 slip systems
are assumed to have equal value, the ratio of the plastic work equals the ratio of
the orientation factors, MFC/MFRC. This ratio is 1.5 for the exact 〈110〉 fibre that
is located in a region of the orientation space less than 10◦ from the orientation
maximizing such a ratio ((MFC/MFRC)max = 1.65). For a texture with a moderate
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Figure 4. Orientation factors for elongation of a Gaussian texture centred on [1̄10](110) with a
standard deviation s = 16.5◦ in Euler space. The texture can be viewed here as representative
either of the orientations of the polycrystal or of a single grain with a misoriented substructure.
Meaning of symbols: fc, full-constrained elongation, no shear relaxations; R2, free relaxation
of dε12 and dε23 shears (parallel to the ribbon surface); R3, free relaxation of dε12 and dε23

shears and (dε11/dε22) ratio for each individual orientation; R4, fully relaxed axial elongation
(i.e. Sachs).

dispersion around a density maximum in 〈110〉, and assuming more realistic relaxed
conditions for the individual strains of the grains, owing to the elongated grain mor-
phology, the ratio is still important: of the order of 1.3 (figure 4). By contrast, for
the two components of the FCC wire textures, fibres near 〈111〉 and 〈001〉, the ratio
is less than 1.2 and 1.0 for the exact ideal orientations, i.e. sharpening of the texture
reduces still further the possibility of cumulative mesoscopic strain heterogeneities.

As for the second necessary condition, inspection of figure 4 shows that the mini-
mum plastic work for any orientation of the approximate 〈110〉 fibre occurs for strains
close to plane-strain elongation along the axial near the 〈110〉 direction and equiv-
alent contraction of the transverse near the 〈001〉 direction, the length in the near
〈110〉 transverse direction remaining invariant, i.e. for a value β = 0 of the ratio,

β = −dε11

dε33
, (2.1)

taking the reference system depicted in figure 2, where direction 3 is the axis of the
wire. A mesoscopic strain field involving bending implies that different microscopic
volume elements of the same grain will be deforming by elongations with a range
(βmax − βmin) centred not far from β = 0 at the neutral axis, with relative freedom
for dε12 and dε23 relaxations. The range of β is limited by the condition that the
macroscopic volume average of orientation factor with bending should not surpass
the average orientation factor for the texture deforming without bending (i.e. the FC
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Texture and large-strain deformation microstructure 1609

factor for axisymmetrical uniform deformation, or, better, the corresponding factor
allowing for some shear relaxations, R2). We will show that the amount of bending
needed for a compatible deformation of an ensemble of grains with 〈110〉 texture
deforming approximately by plane strain (β = 0) leads to an orientation factor well
below such a theoretical limit (as borne out by the observations!).

3. The effect of curly microstructures on work hardening

Mesoscopic plastic strain heterogeneities imply local lattice curvatures, whose sign
does not change along regions of extension related to the current grain size. Such
curvatures must be resolved by the storage of a density of geometrically necessary
dislocations, which, in each microvolume, amounts to a value inversely proportional
to an effective local curvature radius, rκ,

ρcurl =
M∗

bcurlrκ
, (3.1)

where bcurl is the effective Burgers vector of the dislocations absorbing the local
curvature (in the [0001] HCP case, for instance, they are 〈c + a〉 dislocations on
pyramidal systems, the dislocations involved in the pure elongation being 〈a〉 dislo-
cations on prismatic systems). M∗ is an orientation factor relating the curl strain
with the crystallographic slip strain in the systems of the geometrically necessary
dislocations; it will be larger than unity and its order of magnitude will be 2. In the
BCC wires, the curvature is approximately a pure tilt around the wire axis and rκ
is the local bending radius as a first approximation (Nabarro 1967).

The curvature radius rκ is related to the current grain size. In general, the relation
will be a simple proportionality with the current grain dimension in the direction of
the local curvature radius, a function of the strain history times the initial average
grain size, l0. Thus, equation (3.1) implies that the extra work hardening arising
from mesoscopic heterogeneities will be grain-size dependent, the dependence being,
in principle, of the Hall–Petch type.

Now, for ρcurl to be important, and to remain important, we need to comply with
a supplementary condition besides the other two pointed out in the previous section:
initial grain size (or interphase distances in two-phase materials) must be small,
and the directions of the curvature radius should not be extended by the macroscopic
imposed strain. The effect will be at a maximum when the direction of the curvature
radius is contracted by the macroscopic strain, as is the case in the BCC and HCP
wires and related cases. By contrast, in the case of axisymmetric compression of FCC
polycrystals, the two conditions for curling manifestation (§ 2) are met, and, indeed,
curling of the grains is observed in transverse sections (Hosford 1993). However, the
direction of the local curvature radii lies on the plane transverse to the compres-
sion axis and the magnitudes of the radii are continuously magnified all along the
deformation path, the associated work-hardening enhancement being progressively
weakened as strain proceeds. In agreement with this explanation, compressive stress–
strain curves of FCC polycrystals do not specially differ from the stress–strain curves
obtained along other strain paths where no grain curling is observed (Gil Sevillano
et al . 1980; Hecker & Stout 1983; Gil Sevillano 1991).
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4. Calculation of the work hardening of BCC polycrystalline
materials at large strains imparted by wire drawing

or other axisymmetric elongation methods

(a) A morphological model of the curly microstructure

If we make a geometrical model of a transverse section representative of a polycrys-
talline wire deforming by equibiaxial contraction, where each grain has a flexible
direction of strain invariant length of initial random orientation, and we map the
successive morphologies of the section as their area contracts in the same proportion
that their axial dimension elongates, we can extract from its morphological changes
all the data needed for calculating an approximation to its macroscopic stress–strain
behaviour. If grain contiguity is maintained and grain boundary sliding is forbidden,
the value of β (equation (2.1)) for each microvolume can be measured, and the aver-
age orientation factor for the wire, M , calculated using a Taylor FC or relaxed model
as done for figure 4:

β = β(ε), M = M(β).

The orientation factor will be a better upper bound than the uniform-strain Taylor
factor. Simultaneously, from the local curvature (equation (3.1)), the instantaneous
value of the dislocation density originating from curling (i.e. immune to dynamic
recovery without long-range diffusion) can be obtained and added to the statistically
stored dislocation density, ρs, assumed to be known,

ρ = ρ(ε) = ρs(ε) + ρVGS(ε). (4.1)

The value of the critical resolved shear stress can be estimated through the well-
known τc–ρ relationship (Gil Sevillano 1993), and, then, the volume average of local
strengths gives us the macroscopic strength:

∆σVGS = σ(ε)− σ0 = M̄(β)[0.05Gb
√
ρ ln(1/b

√
ρ)]. (4.2)

A calculation exactly as described above is not easy to perform; we have made
an approximate model that does not strictly maintain either the contiguity or the
volume of the individual grains but which complies with the macroscopic boundary
conditions with local near-plane-strain elongation of the grains, and maintains the
constancy of the volume and the contiguity at mesoscopic range (and, of course, at
macroscopic level; see Gil Sevillano et al . (1998) and Gil Sevillano & Flaquer-Fuster
(1996)). The model can be classified as a particular case of a non-intersecting self-
avoiding random walk model (Vicsec 1992) starting simultaneously from multiple
nuclei.

The model starts with a random distribution of ng grain nuclei on a plane surface,
A0, from which a plausible equiaxed grain structure of the undeformed wire section
could be achieved by, e.g. Voronoi tesselation. From each nucleus, a randomly ori-
ented linear segment, of length ∆w0, small relative to the internuclear distance, l0, is
started. From that moment on, new segments are added to the end of the lines with
a non-intersecting self-avoiding growth scheme, the orientation of each new segment
being determined by the presence of the segments of the other lines and of its own,
assuming as the interaction law a repulsive law quadratic with the intersegment dis-
tance. No other condition is imposed for growth, the possible range of angles for the
new kink of the line being −π < ∆Ω < π. The lines are assumed to be the skeletons
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Figure 5. Sketch of the k steps of growth of a grain skeleton line with the definition
of its end-to-end distance, R0.

of sections of 〈110〉 grains, i.e. the invariant-length directions of the grains that bend
around the wire axis. The choice of each new growth direction takes into account
an area of influence around the growing segment end containing at least 20 other
segments (judged big enough on a trial-and-error basis). The grains are assumed to
elongate uniformly in the axial direction and to be initially equiaxed and of the same
grain size, l0. Their transverse dimensions, w being the invariant length line and t
the thickness, are assumed to vary according to the constancy of the volume:

l0 = (A0/ng)1/2, (4.3)

l30 = lwt, (4.4)
l = l0 exp ε, w = l0. (4.5)

In fact, in the numerical calculations, after a very large number of steps, some lines
reach an artificial limit for their indefinite growth (again, a compromise between time
of calculation and the ratio l0/∆w0 is necessary). On account of this, the true grain
dimension along the invariant length direction of each ith grain, wij 6 l0, is recorded
after each calculation step, j, as well as the kink angle formed with the previous
segment, ∆Ωij (figure 5). The current grain thickness, tij , is calculated

tij = l20/wij exp ε, (4.6)

and the cumulated misorientation absorbed by geometrically necessary dislocations,

Ωij =
∑
|∆Ωij | = wij/(rκ)ij . (4.7)

From the total misorientation accumulated in the sample after step i, Ωi, the
volume (surface, in our case) average curvature, directly linked with the average
dislocation density (equation (3.1)), is obtained (1/rκ)i.

The misorientations, in this case of equibiaxial transverse contraction, are scale
invariant. The simulated structures have been calculated on the initial sample area
A0, so actual linear dimensions on the simulated transverse section must be con-
tracted by a factor exp(−ε/2). Consequently,

ε = 2 ln[1 + j(∆w0/l0)]. (4.8)

To minimize edge effects, the area A0 has been taken as the total area of a cube,
on which the growing lines can freely walk. The results subsequently presented corre-
spond to simultaneous growth of 1800 lines (grains) with a relative growth segment
length per step of ∆w0/l0 = 1/14.
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Figure 6. Skeletons corresponding to 300 grains (one face of the cube) for three successive
macroscopic strain values, ε = 0.27, 1.08 and 3.05, respectively, together with their corresponding
tesselations of the plane (isotropic dilation till impingement). The linear scale is magnified by
exp(ε/2), the tesselation corresponding to the largest deformation is only a zoom of the lower
right of the section.
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Figure 7. The skeleton lines of another area with 300 grains after a much
larger axisymmetric strain, ε = 6.4.
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Figure 8. The structures corresponding to ε = 1.1 and 1.8, respectively, where successive dilations
from the skeleton (successive fronts at distances in inverse geometric progression) have been
shown, together with the final impingement tesselation.

(b) Results

Some examples of the microstructures generated are shown in figures 6 and 7. On
a qualitative basis, the model mimics, rather well, many observed curly structures,
but its limitations are also evident. For instance, the actual grain bending is partly
hidden by the tesselations (figure 8), because the model does not completely respect
the contiguity of one grain with its neighbours during the simulated deformation
process; some grains have bent or even spiralled on themselves.

From the average curvature computed for a sample of 1800 grains, the average
dislocation density originated by curling has been computed as a function of strain
assuming M∗ =

√
6 in equation (3.1) (see figure 9). M∗ =

√
6 is the value of the
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Figure 9. Computed dislocation density originated by curling versus strain, logarithmic scale.
The two curves correspond to the indicated starting grain sizes.

orientation factor for plane-strain elongation in the [1̄10] direction (figure 2) and
plane-strain bending has been assumed. The value of this factor is only a guess; it
depends on the actual configuration adopted by the geometrically necessary disloca-
tions. The Burgers vector bcurl is, here, the 1

2〈111〉 lattice dislocation Burgers vector
b = 0.25 nm (strictly valid for αFe or Cr).

Then, the stress–strain curve has been computed according to equations (4.1) and
(4.2) with the same value for the average orientation factor and with a constant value
for the statistically stored dislocation density ρs = 1015 m−1/2, of adequate order of
magnitude for the saturation of the dislocation density at large strains (ε > 1) in the
absence of mesoscopic heterogeneities (Gil Sevillano 1993). The result is presented
in figure 10 for two starting grain sizes; for ε > 1.5 the curves are approximately
linear (actually an upward curvature is regularly seen in experimental curves when
very large strains are reached (see, for example, Langford et al . 1971)), and their
slopes limit almost exactly the observed range of experimental work-hardening rates
of figure 3.

5. Discussion

(a) Validity of the assumptions

The model mesostructures generated are qualitatively similar to real curly micro-
structures and, from their geometry, a reasonable prediction of the observed work-
hardening rates has been obtained. The conclusion is that the high strengthening
capability of wire drawing of BCC metals or HCP Ti alloys is purely related to the
particular mesoscopic strain field induced by texture. There is no need for any special
microscopic explanation for this behaviour. Previous explanations of this kind, like
a kinship with the athermal stage II of single crystals via recourse to the so-called
similitude principle (Kuhlmann-Wilsdorf 1970), appear to be redundant. In fact,
detailed substructural analysis has shown that here similitude is not obeyed (Lang-
ford & Cohen 1975; Langford et al . 1971), and the applicability of equation (4.2) is
nearly independent of the actual spatial distribution of the dislocation density, be
it randomly distributed or forming two-dimensional sub-boundaries (Li 1963). But,
for accepting the present explanation, we should check further the validity of the
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Figure 10. Stress–strain curves for axisymmetrically drawn BCC wires computed for two grain
sizes (10 µm and 1 µm) calculated from the geometrical data extracted from simulated curly
structures. The assumptions of the model are only valid for large strains (ε > 1), the first part
of the hardening, dominated by the statistical storage of dislocations, has not been taken into
account. A ‘friction stress’ term, σ0, will be present in experimental curves.

Figure 11. Average accumulated misorientation per chain versus number of growth steps for
the simulation reported in this paper.

model. Figure 11 shows the evolution of the mean accumulated misorientation in
the sample. The rate of misorientation growth per calculation step increases up to a
maximum of π/10 (18◦) for the employed ratio l0/∆w0 ≈ 14, for (j > 100, ε > 4).

Without any assumption about the position of the neutral axis for the bending of
the ribbons, from equations (4.6) and (4.7) we have

[(ε11)max − (ε11)min]ij = (∆ε11)ij = tij

(
1
rκ

)
ij

= l20
Ωij
wij

exp ε ∼= Ωij
exp ε

, (5.1)

where, as in the rest of the paper, ε = ε33. On account of equation (4.8), approaching
j by a continuum, and averaging for all the grains,

(βmax − βmin)j = ∆β =
1

4 exp(ε/2)

(
l0

∆w0

)(
d〈Ωij〉
dj

)
− 〈Ωij〉

(exp ε)2 . (5.2)
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Figure 12. Predicted range of the mean bending strain component of the grains, ∆β,
as a function of axial strain, ε.

Figure 12 shows the β range as a function of axial strain. The location of this
range in the abcissae of figure 4 will be such as to minimize

M̄ =
1

∆β

∫ βmax

βmin

M(β) dβ, (5.3)

and the curly microstructure will develop provided M̄ < M (β = 0.5). This is, of
course, the case from the beginning of the macroscopic axisymmetric deformation
once the 〈011〉 texture is well developed in BCC metals. From figure 12 or inspection
of equation (5.2), it may also be seen that curling continues to develop at large
strains, where the redundant contribution to plastic work steadily decreases and
tends to its minimum value.

(b) Some indications for further improved calculations

Figure 13 shows the root-mean-squared end-to-end distance of the skeleton lines of
the grains (figure 5). It tends to saturate at R0 ≈ 3l0, i.e. for large strains, the region
(surface in the cross-section) of interaction of one grain has increased about nine
times from its initial value. If a minimum interaction should involve exclusively first
neighbours, an absolute minimum for an FEM simulation connecting mesoscopic and
macroscopic behaviour should contain, for curly microstructures, at least 60 grains
with proper boundary conditions.

The geometry of the simulated curly microstructure provides another more subtle
indication about the minimum size required for reproducing the grain interactions
leading to this particular mesoscopic behaviour. The curly structure is a case of self-
organization, and its geometry shows a fractal behaviour for grain sub-aggregates
reaching about three times the average initial intergranular distance. Beyond such
range, the geometrical behaviour of the aggregates is trivial (Gil Sevillano et al .
1998), i.e. macroscopic. The size 3l0 of non-trivial behaviour is coincident with the
limit root-mean-squared end-to-end distance of the curly grains referred to above.

(c) Grain-size dependence of the flow stress and work-hardening rate

There are few results on the grain-size dependence of the stress–strain behaviour
in BCC or HCP wire drawing at very large strains. The results of Biswas et al . (1973)
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Figure 13. Root-mean-squared end-to-end distance of the skeleton lines of the grains
(in units of initial grain size) versus number of calculation steps.

on Ti (2 < ε < 4) do not show any influence of grain size on the work-hardening
rate. Those of Morrison & Miller (1970) on low-carbon steel (2.5 µm 6 l0 6 11 µm)
show an important Hall–Petch-type strengthening between ε = 1 and ε = 3, but
the work-hardening rate does not seem to depend on grain size. This is, of course, a
question mark for the present model. More experimental results should be gathered
covering a large strain range and spanning a wider grain-size range to clarify this
point. A possible influence of grain size on texture development should be checked
as a tentative explanation for the low sensitivity of the work-hardening rate versus
grain size, but this is only a conjecture. The grain subdivision in misoriented blocks
at an early deformation stage (Hansen & Juul Jensen, this issue), which is more
important for larger initial grain sizes, offers another qualitative explanation for the
low grain-size dependence of work hardening observed.

6. Conclusions

(1) A geometrical model that approximately reproduces the curly microstructures
observed in transverse sections of BCC and some HCP and ordered inter-
metallics macroscopically deformed by axisymmetric elongation has been devel-
oped.

(2) The model is based on the simultaneous growth of self-avoiding non-intersecting
walks on a plane surface. The walk lines are taken as the skeletons of the trans-
verse section of grains deforming by near plane-strain elongation and obliged
to interfold to maintain mutual compatibility.

(3) From the morphological parameters of the simulated structures, the contribu-
tion of the density of geometrically necessary dislocations to work hardening
has been computed, giving good agreement with experimental values.

(4) Consequently, the extraordinary retention of an almost athermal quasi-univer-
sal high work-hardening rate up to very large strains, discussed here, does
not need to be linked to stage II or to any special microstructural processes
or principle. Its origin is mesoscopic and probably constitutes an exceptional
case.
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(5) At first sight, the importance of the contribution of mesoscopic phenomena to
macroscopic hardening through other deformation paths (e.g. rolling, shear) in
single-phase polycrystals of technical interest does not appear to be so relevant,
although some particular ideal textural combinations could show similar effects.
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